

Paradigmas de Programación en Robótica: ¿ Existe un Paradigma Unificado?

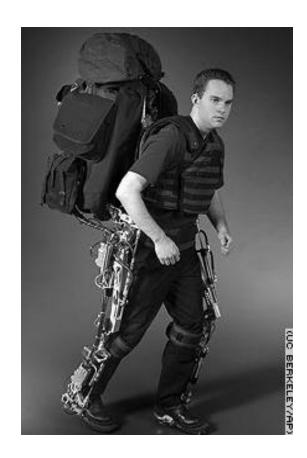
Prof. Wilmer Pereira

¿ Qué es un robot ?

Criatura mecánica que emula funciones de un humano

- O Manufactura: manipuladores nucleares e industria automotriz, ...
- O Servicio usuario final: aspiradoras, guías de museos, mesoneros, ...
- Vehículos terrestres, submarinos y espaciales
- Telepresencia, realidad virtual y exo-esqueletos

Sensor: Exploran el entorno para posicionarse y/o controlar sus movimientos. Los sensores pueden ser activos o pasivos


<u>Efector</u>: Actuan sobre el entorno según sus grados de libertad (*gdl*) que son los posibles movimientos básicos independientes bien sean giratorios o de desplazamientos.

Usos de la Robótica

Sensores

Contacto: Limitados para explorar

Fuerza: Dificiles de manejar

Infrarojos: Sensibles a la luz solar y fluorescentes

Cámaras: Se debe tener gran capacidad de procesamiento

Sonares:

Muy utilizados en navegación con pulsos > 20KHz 300 mts/seg => 1 mt en 0,006 seg

Problemas:

El rayo es cónico => puede no dar la distancia más corta A ciertos ángulos de reflexión, pueden desaparecer obstáculos Múltiples rebotes => ruido => falsos obstáculos

Efectores

O Locomoción:

Estáticamente estable (no se cae ante pausas)

Dinámicamente estable (más rápido pero complejo al programar)

Manipulación:

Holomónico (*gdl* del robot = *gdl* del ambiente) o no holomónico Rotatorio o Prismático (Mayor *gdl* son más precisos pero más complejos de programar)

Motores

Hidraulicos: Aceite mineral rápidos y gran capacidad de carga,

pero ... dificil de mantenimiento y costosos

Eléctricos: Motor paso a paso precisos, fiables y silenciosos,

pero ... Potencia limitada

Neumáticos: Aire a presión barato y sencillo de mantenimiento,

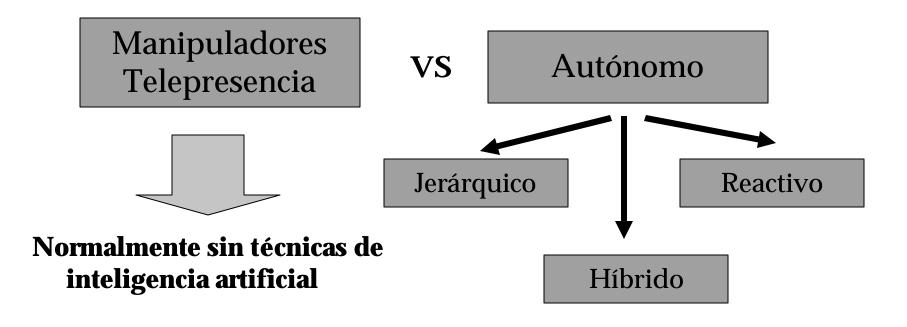
pero ... Dificil de control continuo y ruidosos

Legomindstorm

Kit robótico básico con hardware configurable y software para programar aplicaciones móviles

Sensores adicionales:

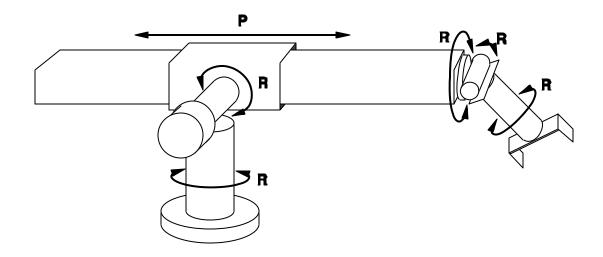
- Sonares ultrasónicos
- Temperatura
- Rotación
- Cámara ...


Facilidades de software:

- Programación visual orientado a eventos
 - Procesamiento concurrente en tiempo real
 - Únicas variables internas: contador y reloj
 - Ciclos de ejecución controlados por eventos
 - Comunicación entre RCX's a través del puerto infrarojo
- Firmwares en Java, C, VisualBasic, etc.
- Extensiones para diseñar criaturas, robots deportistas y módulos espaciales

Paradigmas en Robótica

Filosofías y/o técnicas que caracterizan el enfoque para resolver problemas



Robótica con manipuladores

Automatización industrial en tareas repetitivas que no requiere sensores pues los algoritmos normalmente son determinísticos

- No es solución a largo plazo
- Se usa en trabajos riesgosos y tediosos
- En casos de haber cambios, deben ser reprogramados

Robot teleoperados

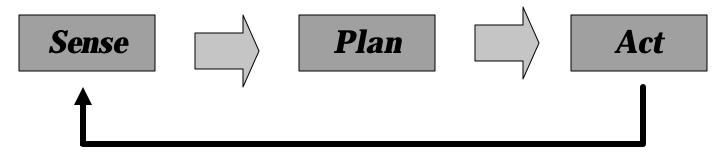
Robots controlados a distancia con intervención humana

- Visión a distancia tiene problemas de ancho de banda del enlace (sobre todo si es inalambrico !!!)
 - No necesariamente es periférico
 - Fatiga cognitiva del operador
- Un operador por robot
- Posicionamiento real vs posicionamiento reportado Retardo de conexión (2,5 min a la Luna y 140 min hasta Marte)

Tesis1: Telepresencia vía Red

Construcción de aplicaciones que interactuen con un robot a partir de un componente Jini

Servicios (Robots) Localizador de Servicios (JINI)

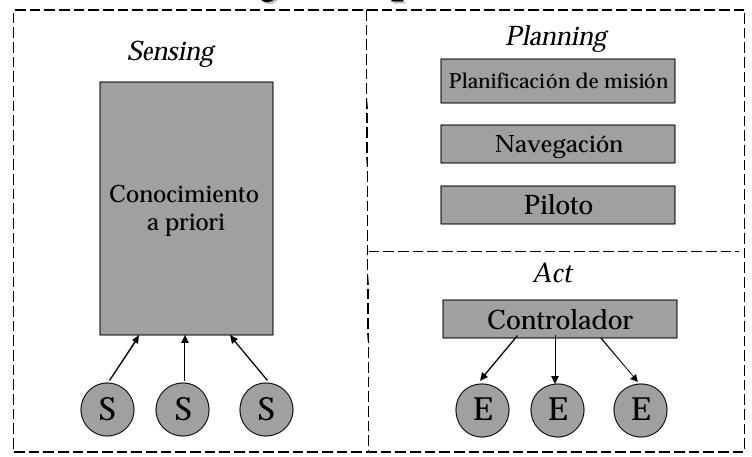

Clientes (Mapas)

- Robot Legomindstorm navegando en un ambiente desconocido con obstáculos (montado sobre una estación SUN Ultra)
- Mapa de navegación se visualiza en un computador remoto
- El operador humano controla los movimientos del robot con ayuda del mapa, usando los efectores (motores y dispositivos de rotación) gracias a los sensores (sólo contacto)
- El robot es un servicio de red compartido (controlado con un enlace infrarrojo), accedido remotamente (programa Java+Jini)

6th World Multiconference on Systemics, Cybernetics and Informatics (SCI 2002), Orlando, USA, 14-18 Julio 2002.

Paradigma Jerárquico

Las sensaciones se reúnen en un modelo global de planificación: misión (objetivo), navegación (búsqueda de caminos) y piloto (decisión sobre acción) y actúa usando la introspección



Es necesaria la suposición de mundo cerrado CWA (*Closed World Assumption*). El mundo es sólo lo explícito

Inconvenientes ... más arte que ciencia ... planificación permanente hace el enfoque lento

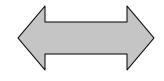
Control jerárquico anidado

Al recibir información de sensores se reestructura navegación y piloto más no la misión

Tesis2: Autonomía en Navegación

Sistema Autónomo de Desplazamiento en Robots con Reconocimiento de Patrones Geométricos Regulares

- Robot *Legomindstorm* navegando en un ambiente desconocido de calles e intersecciones
- Algoritmo de aprendizaje por reforzamiento
- Pruebas de comparación entre Q-Learning y Value Iteration para medir desempeño en diferentes circunstancias de navegación
- El robot es autónomo y recibe feedback del entorno (distancia hasta el objetivo desarrollado en JAVA


International Conference on Informatics in Control, Automation and Robotics, Setúbal, Portugal, August 25-28, 2004.

Paradigma Reactivo

Sense

Act

Fuerte tendencia biológica que acopla *sense-act* con comportamientos de estímulo/respuesta (Plan omnipresente)

El paradigma estímulo/respuesta de los psicólogos de Harvard inspirados en B. F. Skinner

Inconvenientes ... obviar el plan es una situación en ocasiones extrema

... ¿ debemos imitar el comportamiento animal ?

... ¿cómo aprender ?

... ¿ qué hacer en los conflictos por concurrencia ?

... los animales evolucionan no así los robots !!!

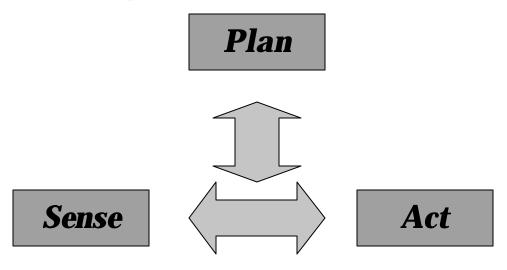
Adquisición del comportamiento

- Innato: al alimentarse, el pico rojo de las aves: pichón y madre
- Secuencia innata: avispas aparean, macho construye nido, hembra deja huevos
- Innato con memoria: abeja ubica colmena haciendo inicialmente viajes cortos desde distintos ángulos
- Aprendido: la caza en los leones
- El estímulo puede ser interno (hambre) o externo (dolor que causa objeto) o abstracto (altruismo)
- Los estímulos son disparadores de comportamientos
- Ante la concurrencia de estímulos debe haber

 Los mecanismos de percepción son la manera de captar los estímulos del medio ambiente (abejas que identifican flores por coloración UV)

Tesis3: Navegación con imágenes

Programación de un Robot Autónomo modelo con Procesamiento Digital de Imágenes


- O Movimientos en un espacio con señalización que indica directivas de desplazamiento (derecha, izquierda, adelante o atrás)
- Robot Legomindstorm y una cámara vision command para la entrada de información y dos motores para salida o efectores del sistema
- O Programación en VisualBasic con un ActiveX (spirit.ocx) y librerías de la empresa (Logitech) para reconocimiento de patrones (letras).

Limitaciones

- O Procesamiento de imágenes en el computador (bajadas por el puerto USB cableado) lo cual impide plena autonomía
- O El robot no es capaz de encontrar los letreros pues no maneja profundidad en las imágenes

Paradigma Híbrido

Primero planifica y luego es reactivo

El planificador está presente en toda la captura de sensaciones pero sólo actúa en ciertas condiciones

Inconvenientes ... muy dependiente de la aplicación

Tesis4: Aprendizaje en esquema depredador/presa

Sistema Autónomo de Inteligencia Artificial para Orientar Intersección de Objetivo Móvil de Comportamiento Evasivo Aplicado a Robótica

Interacción de dos robots donde uno es depredador y el otro presa.

La presa tiene una técnica evasiva desconocida del depredador

El depredador utiliza técnicas de Inteligencia Artificial para aprender y capturar la presa La entrada de datos la recibe el depredador desde una

La entrada de datos la recibe el depredador desde una cámara situada sobre el espacio.

Integración de Paradigmas: Robótica Espacial

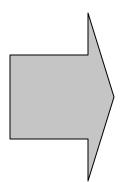
La robótica espacial integra todos los paradigmas pues debe ser autónomo y también es posible la telepresencia

Rovers recientes Spirit y Opportunity (Enero 2004) activos más del tiempo previsto

IDEA = Agentes Inteligentes de Ejecución Instalable, futuros robots en el Centro Ames (NASA), en Silicon Valley.

Capsula *Huygens* de la misión *Cassini*, que se posará en Titán (una de las lunas de Jupiter)

Multiagentes



Multiagentes (Sociedad)

Aplica en casos de redundancia (fallas) o bien cuando varios robots resultan más económicos que un solo robot muy potente

Problemas:

- ¿Cómo evitar la interferencia entre los distintos robots?
- ¿Cómo saber si el conjunto avanza?
- ¿Qué comunicar?
- ¿Cómo evitar que la autonomía interfiera con la cooperación?

Heterogeneidad (homogeneo o heterogeneo)

Control (centralizado o distribuido)

Cooperación (software o hardware)

Objetivos (fijo o variable)