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Abstract:  This paper presents an approximation of navigation problem under unknown environment using 
reinforcement learning. The motivation is to represent a robot that can move in a world with streets and 
intersections. Each intersection has a different quantity of streets (irregular blocks). The selected algorithms 
were Q-Learning and Value Iteration. The robot was programmed only with Q-Learning and we developed 
a simulation with both of them. This simulation allows making comparisons in order to determinate in 
which situation each algorithm is appropriate.  

1. SYNOPSIS 

This paper presents a particular application for 
unknown environment using two techniques of 
reinforcement learning. These algorithms allow an 
autonomous agent or robot, to reach a goal by 
learning the environment. In our case, the world is 
formed by blocks of irregular geometric forms. The 
robot does not know a priori the world but he learns 
to identify it. The robot only knows previously the 
location of the goal, given in terms of coordinates (x, 
y).  

The reinforcement learning algorithm selected 
for the robot was Q-Learning. This algorithm 
consists on rewarding or penalizing each possible 
action that the robot executes. Given a policy, the 
robot is able to reach a goal, learning by trying and 
testing.  

The simulation was developed using Q-Learning 
and Value Iteration in order to test these algorithms 
in different worlds. It allows comparing them under 
different situations, either changing the form of the 
blocks of the world, or changing the position of the 
goal. 

The robot was built with a Lego Mindstorm 2.0 
kit with two light sensors and one rotation sensor. 
The selected language for robot application was Java 
under Lejos platform and the simulation was 
developed in Visual Basic.  

1.1  Justification 

The problem arises when an agent need to be 
located in an unknown environment. For example, in 
Caracas, Venezuela, most of blocks are rectangular 
and the movements are given in right angles. 
However, in other places, blocks can be of irregular 
forms and it is possible to end up losing the sense of 
the orientation. If an agent do not know to move in 
places where blocks are irregulars, it is necessary a 

new learning process that can make the task of 
recognition of these patterns. It can be able to go 
from a point to another without to get lost. 

2. REINFORCEMENT LEARNING 

The reinforcement learning uses recompenses 
and penalizations when the agent executes an action 
in order to reach the goal. In reinforcement learning 
an agent interacts with their environment. This 
interaction allows the agent, based on sensor inputs, 
chooses an action to be carried out in the world.  

The learned behavior contains the robot's 
implicit world model. By using reinforcement 
learning it is not needed to have examples to build 
and to validate the behavior (like supervised 
learning). The behavior is synthesized using a scalar 
(reinforcement) as the only source of information. 
This information allows evaluate the action. The 
agent receives positive, negative or null 
reinforcements according situations and action 
selected. There is not separation between the 
learning phase and the using phase.  

In this work, the world is inaccessible a priori to 
the robot (it must learn the world), recompenses are 
received in any state or situation, and the robot is a 
passive apprentice (it does not alter the world). 

2.1 The reinforcement and value 
functions  

In reinforcement learning must be defined a 
reinforcement function. This is a function of the 
future reinforcements that the agent searches to 
maximize. In other words, a relationship exists 
between the couple state/action with the 
reinforcements. After carrying out an action in a 
state, the agent will receive some reinforcement 



(reward) given as a scalar value. This reinforcement 
defines the value function. The agent learns how to 
maximize the sum of the received reinforcements 
when begins from an initial state and proceeds to a 
terminal state. 

The value function is based on a field of the 
mathematics called dynamic programming. To 
explain it, some notations is needed: V*(xt) is the 
optimal value function, where xt is the vector of 
states; V(xt) is an approximation of the function 
value; γ is the discount factor in the range of [0,1] 
that causes that the immediate reinforcement has 
more importance than the future reinforcement. In 
general, V(xt) can be initialized with random values 
and it does not contain information about the optimal 
value function V*(xt). This means that the 
approximation of the optimal value function in a 
given state is similar to the value of that state given 
by V*(xt) plus some error in this approximation. The 
following equation (1) express this idea: 

 
V(xt) = e(xt) + V*( xt)    (1) 
 

where e(xt) is the error in the approximation of the 
value, in this state, in the time t.  

The value of the state xt follow a policy that is 
the sum of the reinforcements when it begins of the 
state xt and carrying out good actions until a terminal 
state is reached. For this definition, a simple 
relationship exists between the values of the 
successive states xt and xt+1. This relationship is 
expressed by the Bellman equation (2). The discount 
factor γ is used exponentially for decrement the 
weight of the reinforcements received in the future. 

 
V(xt) = r(xt) + γV(xt+1)    (2) 
 
The process of the learning is the process to find 

a solution for the equation (2) for all the states xt, 
through the space of states. If there are not changes 
in the state values, then the state values have 
converged. 

2.2 Value Iteration 

One can find an approximation to optimal value 
function evaluating for all possible state since xt. In 
equation (3), u is the action performed in state xt and 
cause a transition to state xt+1 and r(xt,u) is the 
reinforcement received when performing action u in 
state xt. 

 
V(xt) = maxu (r(xt,u) + γV(xt+1))  (3) 
 
The figure 1 illustrates this process. 

 

 
Figure 1: Tree of states for Value Iteration 

  
The previous figure describes how update the 

value in xt. Specifically, there are two possible 
actions in the state xt, and each one of these actions 
directs to different states successors xt+1. To update 
in Value Iteration, it should find the action that 
returns the maximum value (BFS algorithm). The 
only way to achieve this is by executing an action 
and calculating the sum of the received 
reinforcement and the approximate value of the state 
successor xt. 

2.3 Q-Learning 

Q-Learning is another extension to the traditional 
dynamic programming that solves the problem more 
simply. Value Iteration requires finding the action 
that the maximum prospective value returns (the sum 
of the reinforcement on all the possible states 
successors for the given action).  

Q-Learning differs from Value Iteration in that it 
does not require in a given state each action be 
performed and the expected values of the successor 
state be calculated. While Value Iteration executes 
BFS, Q-Learning takes a single step sample. It only 
needs to be the maximum value in the new state to 
have all the necessary information to revise the 
prediction associated with the executed action. Q-
Learning  does not require to calculate on all the 
possible successor states. This process is 
demonstrated in figure 2:  

 

 
Figure 2: Tree of States vs. Actions 

 
In Q-Learning each situation-action has a value 

(called Q-value). In each state, there is a Q-value 
associated with each action (a matrix). The 
definition of the Q-value is the sum of the received 
reinforcements when the action is executed 
following a policy. So Q-Learning represents values 
with a matrix instead of Value Iteration that 
represents it with a vector (only a value for each 
state). 



The Q-value of a state should approximate the 
maximum Q-value in the given state. In this case, it 
is easy to derive the equivalent of the Bellman 
equation (4) for Q-Learning: 

 
Q(xt,ut) = r(xt,ut)+ γ maxut+1(Q(xt+1,u t+1))       (4) 
 
After the execution of the action for the robot in 

the real world, a reinforcement function provides a 
reinforcement value. It can take +1,-1 or 0 values. It 
is used by the update function to adjust the 
recompense value (Q) associated to the situation-
action in the robot's memory. 

2.3.1 Q-Learning Algorithm 

In this application, the algorithm was modified 
including ß factor. β represents the learning rate and 
it should be bigger than 0. The algorithm steps are: 

 
1. Initialization of the robot's memory: for all the 

situation-action couples, the Q-values are zero. It 
also could be initialized with random values. 

2. repeat  
a. x is the situation of the world. 
b. The evaluation function selects the action to be 

executed:  x = Max(Q(x,u')) 
    where u' represents any possible action. The 

selection process depends on the distance to the 
goal. 

c. The robot executes the action u in the world. Be 
r the recompense (r can be 0) associated with 
the execution of that action in the world. 

d. Updates the robot's memory: 
 

Qt+1(x,u) = Qt(x,u) + ß (r + γ max(Qt(x', u')) - Qt(x,u)) 
 
        where x' is the new situation after having been 

executed the action in the situation x, u' 
represents any possible action. 

 
This algorithm was implemented in Java: LejOS 

(Lego Java Operating System) and is executed by 
the robot when it navigates in the world. 

3. APPLICATION DEVELOPPED 

3.1. Analysis 

This work was developed in order to ask the 
following questions: 

 
(1) Which characteristics should have the world 

where the robot is unwrapped?  

The idea is to learn how can be guided a 
robot in a world whose blocks form are 
ignored by the autonomous entity.  

(2) What reinforcement learning algorithms 
should be implemented?  
Q-Learning and Value Iteration are the most 
popular algorithms. It should be interesting 
compare these algorithms under different 
constraints. 

(3) How do apply Q-Learning and Value 
Iteration to our application? 
In order to navigate problem, the robot is 
rewarded if this comes closer to the goal 
and it is punished if it moves away from 
him. 

(4) Which operating system (firmware) is 
appropriate to program the robot?  
There are four possible operative systems to 
program the robot: BrickOS (well-known 
previously as legOS), NQC, the Robotic 
Invention System (RI), and LejOS. The last 
one is based in JAVA, so highly Object 
Oriented, the maintenance is easier than in a 
language structured as C and it is also 
available for a wide variety of platforms. 

3.2 Design 

It should be convenient to design and to prove 
different types of physic structures for the 
autonomous entity (robot), in order to define and to 
build the environment and finally to adjust the 
algorithms Q-Learning and Value Iteration.  

3.2.1 Robot Design 

The first problem that was presented was the 
accuracy of the movements and the turns, since the 
robot should make turns on his owns axis and 
movements along the streets or roads. If errors are 
present in the turn, the robot takes a wrong road, 
harming in a significant way the execution of the 
algorithm. 

 
Due to the inaccuracy in the movement, we used 

a dual differential drive, such as it shown in the 
figure 3. 

 
Figure 3: Transmission system with dual differential 

drive 
 



In this system, a motor takes charge of moving 
the robot straight line (forward or back), while the 
second motor takes charge of carrying out the turns 
(toward the left or toward the right), and one of the 
motors should only work at the same time, both 
cannot work at the same time. The advantage of 
using this system resides in that both wheels work to 
the same speed maintaining a uniform movement. 

Once resolved the problem of the accuracy of the 
movements, initially it was planned to use 
caterpillars, but these produced an undesirable effect 
in the turns, since these spread to move toward the 
sides. After proving with several types of 
configurations we made the decision of using two 
wheels behind and a stabilizer piece in front of the 
robot. This piece acts as a ski, minimizing the close 
contact with the floor and achieving a stable 
movement as much in the turns as in the right 
movements. 

In order to capture the events of the environment, 
a study was made to define what kind of sensors 
would be used for such an end. Initially it was 
planned to use three ultrasonic sensors, placed one in 
the robot's front part, and the other ones two in the 
lateral sides of the same one. However, serious 
inconveniences arose since with the sensors the 
readings, in many cases, they didn't reflect the real 
situation, for example, when it happens a 
phenomenon called speculate reflection. 

It was adopted two sensor of light under the 
robot pointing toward the floor and a rotation sensor. 
This solves part of the problems mentioned 
previously, as the recognition of roads and 
intersections. The sensor of light maintains adjusted 
the robot to the road because that, if the road is of a 
certain color, for example blue, and then it detects 
another color, for example white, is adjusted to 
follow the road. The rotation sensor allows to know 
how many degrees the robot has rotated, being an 
important element for the robot's navigation. It could 
obtain an error of ±10º. 

Finally the last sensor of light was placed 
pointing to the floor in the robot's front part, which 
allows to detect in a quick and simple way how 
many roads are in each intersection. Lastly, the 
robot's physical construction is: 

 
Figure 4: The robot's final version 

 

3.2.2 Environment 

Once concluded the robot's physical structure, 
we proceeded to the construction of the world. With 
the elimination of the sonar, we decided to eliminate 
the walls and to identify background, roads and 
intersections with the white, blue and black color, 
respectively. 

 
Figure 5: World types. a) With walls. b) Without walls 

 

3.2.3 Q-Learning adaptation 

Firstly, it is necessary to learn how to arrive to a 
specific point of the map from a beginning point. In 
each intersection it should be decided among a series 
of roads, some move away the robot of the goal, 
other brings near it and some even maintain the same 
distance from the goal. If an action in that state 
brings near the robot of the goal, this action it should 
be rewarded, while if the robot goes away, the action 
should be penalized. The autonomous entity should 
learn how to arrive to its destination choosing the 
actions that  offer a bigger recompense. 

Q-Learning requires to elaborate a matrix 
(mainly called Q-Matrix) of actions against states. 
The actions in this case are: rotate a specific angle 
and to move straight . The figure 6 shows some of 
the possible actions that the robot can take in an 
intersection with three ways: 

 
Figure 6: Actions that the robot can carry out in an 

intersection type 
 

In this point, the robot can rotate toward the road 
that is at 30°, 150° or 270° with regard to the 
horizontal. In the Q-Matrix, these actions are 
denominated by the value of the angle that should be 
rotated. 

The states represent situations that can happen in 
the robot's interaction with the world and they can be 
directly the values read by the sensors, combinations 
or derived abstractions of the readings of the sensors 
or robot's internal representations.  



The proposed design of states was one where the 
robot built a coordinated system where the origin is 
the starting point (Figure 7) and the coordinates of 
the goal are already fixed and known previously by 
the robot. Using these references, and trigonometric 
calculations, the distance is calculated between the 
robot and the goal or objective.  

 
Figure 7: System of coordinates used by the robot 

 
It is also necessary to know where is the robot 

with respect to the goal (if it is above, below, to the 
right or to the left of the goal). To obtain that 
information, the coordinates of the goal are 
subtracted with the robot's coordinates, for example, 
if the subtraction of the abscissas and the coordinates 
are negative, the robot is above and to the left of the 
goal (quadrant I of the figure 8). 

The combinations between the quadrants and the 
differences among the distances from the robot to 
the goal define the states. In the table 1, all the 
possible states are shown where dant indicates the 
distance from the robot to the goal when it was in the 
previous intersection. dact indicates the distance from 
the robot to the goal in the current intersection. 

 
Figure 8: The robot's position with regard to the goal 

 

State Quadrant Distance 

0 1 dant < dact 

1 1 dant > dact 

2 2 dant < dact 

3 2 dant > dact 

4 3 dant < dact 

5 3 dant > dact 

6 4 dant < dact 

7 4 dant > dact 
Table 1. Possible States for the Q-Matrix 

 

Finally, the Q-Matrix (table 2) was built using 
the states mentioned previously, and they took the 
actions as the angles from 0° up to 360° numbered of 
10 in 10 (rotation sensor precision), that is to say, 0°, 
10°, 20°, etc. The lines are the states and the 
columns are the actions.  
 

State\Action 0 10 ....... 350 360 

0 0,48 1 ....... 0,93 0,23 

1 0,70 0,60 ....... 0,67 0,37 

2 0,97 0,45 ....... 0,23 0,87 

3 0,65 0,74 ....... 0,62 0,34 

4 0,10 0,76 ....... 0,34 0,73 

5 0,29 0,56 ....... 0,89 0,66 

6 0,69 0,77 ....... 0,83 0,65 
Table 2. Q-matrix 

 
Each state has associated a series of angles that 

represent the possible actions. For example, if the 
robot arrived to an intersection that brought near it to 
the objective and it is in the quadrant 3, the state that 
represents this action is the state 5 (to see table 1 of 
states). Once identified the state, determines the 
action that it will take looking for the biggest value 
in the line for that state. In the table 2, it can be 
appreciated that the maximum value for the state 5 
corresponds to the angle of 350° for what the action 
that the robot will take will be the one of rotating up 
to 350° to move later on straight line until the next 
intersection. These value used to determine the 
maximum, Q-values, represent the utility of a couple 
(state/action). 

Once done this and coming to the following 
intersection, the robot identifies the state again. It 
calculates the recompense of the action taken in the 
previous state. A positive recompense takes place 
when the robot executes an action that brings near it 
to the goal, rewarding it. While a negative 
recompense takes place when instead of coming 
closer to the goal this goes away, for what the 
executed action is penalized (figure 9). With the 
calculated recompense, the Q-value is updated 
(value in the Q-Matrix) corresponding to the couple 
(previous state-action) modifying the values that can 
affect to future decisions for that state. 



 
Figure 9: Rewards of the possible actions that the 

robot can take 

3.3 Implementation 

Q-Learning simulation uses the following classes:  
• RotationNav.java: carries out the robot's 

movements and the turns, to move from a point to 
another, etc. Uses the rotation sensor to know 
what angle is with regard to the horizontal. 

• Qlearning.java: calculates the robot's states, to 
reward the actions taken in each state and of 
storing in the Q-Matrix, all that has to do with the 
robot's learning. 

• Huron.java: manages and coordinates all the calls 
to the other two classes explained previously. 

Value Iteration and Q-Learning algorithms were 
programmed in the simulation, to be able to make 
the comparisons among them. It is pertinent to 
expose first how Value Iteration can be applied to 
the navigation problem. In Value Iteration the taken 
actions in a state always take the same successor 
state, while in Q-Learning, the taken action in a state 
could be anyone of the other states that is not always 
the same one. For this reason, we had to change the 
approach of actions and states so that Value Iteration 
could be applied.  

The approach of actions is the same that was 
used for Q-Learning, but the states were 
implemented in a different way. It was opted to 
represent the states like the intersections of the main 
map, identified by whole numbers. Once defined the 
states and actions, it is necessary to proceed to 
elaborate the base of knowledge. The algorithm only 
needs to know the utility (V-Value) for state: 

 
 1 2 3 …. 49 50 

1 V(1) 90 30 …. -1 -1 

2 270 V(2) -1 …. -1 -1 

3 190 -1 V(3) …. -1 0 

…. …. …. …. …. …. …. 

49 -1 -1 -1 …. V(49) 0 

50 -1 -1 -1 …. 180 V(50) 
Table 3. Knowledge base used 

 

The approach of rewards stays similar to Q-
Learning, if the robot comes closer to the goal this it 
is rewarded but if the robot goes away it’s penalized.  

The application of Value Iteration is relatively 
simple. When the autonomous entity arrives to a new 
intersection, it evaluates the different roads that can 
take in that an intersection. Then it evaluates how is 
the reward that receives for each possible road, 
added with the V value from the state, which arrives 
if it executes that action. Once carried out all these 
operations, the road is chosen whose sum is the 
biggest, V-Value of the current node is substituted 
with that of the selected road and takes this road, and 
repeat all the steps mentioned previously in this 
paragraph until it finds the goal. 

Because the learning is carried out in each state, 
the robot considers that he has learned in that state 
when the value previous V doesn't differ of the value 
current V, the error among them is zero. 

3.4 Tests 

In this last phase was carried out successive tests 
for the detection of error. The robot's acting was 
observed in the environment and the behavior of the 
algorithm Q-learning applied for the navigation.  

Nevertheless, the principal objective in this 
phase is to establish the comparisons among Value 
Iteration and Q-Learning, using the simulation. It is 
important to mention that a iteration begins with the 
robot in the starting point and it concludes when this 
arrives to the goal. Each run can have associated a 
finite number of iterations.  

The Q-Learning reinforcement learning 
algorithm showed to be a good option for the 
navigation problems. In several runs with the built 
robot it could be observed that the algorithm was 
able to reach the goal most of the times. There were 
movements those performance was affected by 
random external events and the errors that were 
presented in the readings of the sensors of light. 

With regard to the simulation, the algorithms Q-
Learning and Value Iteration, one could observe the 
behavior of each one in an ideal world. In this way, 
we can carry out comparisons between both 
algorithms, avoiding the problems with the 
inaccurate of the sensors. Also, modifications can be 
made in certain parts of the algorithms, without 
altering the logic of them. 

The quantity of iterations indicates how many 
times each one of the algorithms were executed. 

 

Test 1 
There was carried out a run of 20 iterations, 

maintaining the goal fixes, with each one of the two 



algorithms to see how it was the learning curve in 
both cases. The obtained graph was the following 
one: 
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Figure 10: Learning curves of Q-Learning and Value 

Iteration 
Here one can observe that Q-Learning converges 

in quicker way than Value Iteration, that is to say, it 
takes less learning time to arrive to the goal. Even 
though Value Iteration takes more time to learn, both 
of them find efficiently the goal with the movement 
policy. 

 
Test 2 

Since the Q-Matrix can be initialized with 
random values or with values in zero, they were 
carried out two runs where one of them was 
initialized with random values and the other one 
with zeros. The result was the following one: 
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Figure 11: Learning curves of Q-Learning 

 
You can infer of this graph that don't care values 

with which the Q-Matrix is initialized, since always 
it will converge in a similar way. The only thing that 
could change is the time that takes in learning how 
to arrive to the goal in the first iterations. 

 
Test 3 

Were carried out 2 runs of the Q-Learning 
algorithm of 40 iterations each one, changing the 
position of the goal after each 10 iterations and 
maintaining it fixed during those 10 iterations. For 
the first run we worked with the matrix initialized 
with random values and for the second run the 
matrix was initialized with zeros. The resulting 
graph was the following one: 
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Figure 12: Learning curve of Q-Learning varying goal 

 
Here we can observe that the behavior of Q-

Learning for both cases is similar, they are able to 
almost establish the same time of arrival to the goal. 
The peaks represent the point where the goal was 
changed position and due to this, the algorithm takes 
more time for the learning when trying to adapt to 
the new change. 
 
Test 4 

Were carried out 2 runs of 40 iterations each one, 
changing the position of the goal each 10 iterations. 
For the first run we worked with the Q-Learning 
algorithm and for second one, the algorithm Value 
Iteration. The resulting graph was the following: 
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Figure 13: Learning curves of Q-Learning and Value 

Iteration varying goal 
 

As you can observe, Q-Learning adapts to the 
changes in a quick way and like the previous graph. 
However, Value Iteration, once had concluded the 
learning of the route to the goal, when it change, the 
new time that takes is equivalent at the time that 
took in arriving to the position previous of the goal 
plus the time that needs learn how to arrive to the 
new position of the goal. 

It is important to notice that Value Iteration, keep 
the route in a state’s graph. It is affected critically if 
it is forced to go by a node or intersection already 
visited. Each intersection has assigned an action that 
was been of the previous learning, what causes to 
take the same road every time that arrives to that 
state. It does not carried out the learning process for 



that intersection, retarding the arrival to the new 
position of the goal. 

 
Test 5 

Due to the previously exposed problem for the 
Value Iteration algorithm and for the time that takes 
learning how to arrive to the new goal. It was 
decided to make a modification that consisted on 
eliminating the condition of learning end, that is to 
say that is carried out the learning process in each 
node or visited intersection. For this case it were also 
carried out 2 runs changing the position goal, of 20 
iterations each one, using for the first one the Q-
Learning algorithm and for second one the Value 
Iteration algorithm. The resulting graph is shown 
next: 
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Figure 14: Learning curves of Q-Learning and Value 

Iteration modified varying goal 

We observed that there was not a significant 
change in the behavior of Value Iteration, because it 
follows the same behavior patterns of the previous 
case, only that the learning was made in all moment, 
in each intersection visited or not visited. 

Test 6 
Lastly, there was carried out a second 

modification in the Value Iteration algorithm that 
consisted in reinitialize the graph every time that the 
position of the goal was changed, maintaining the 
condition of learning end. Were also carried out 2 
runs of 20 iterations each one, changing the position 
of the goal and using for the first run the algorithm 
Q-Learning and for second one the algorithm Value 
Iteration. 
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Figure 15: Learning curves of Q-Learning and Value 

Iteration modified varying goal 

 
For this case, the algorithm Valued Iteration 

adapted better to the changes of position of the goal, 
but that in comparison with Q-Learning, it continues 
taking more time of learning than the one used by Q-
Learning. The disadvantage of this is that no longer 
keeps its knowledge if the robot should travel the 
world again. 

 It is necessary to highlight that the Value 
Iteration algorithm always search the shortest route, 
while Q-Learning only tries to arrive to the goal 
according to a policy of movements product of the 
learning. Occasionally, Value Iteration visited less 
intersections than those visited by Q-Learning 

4.  CONCLUSIONS 

Along this work, we studied different aspects of 
the artificial intelligence applied to the area of the 
learning, specifically the reinforcement learning. 
They allow solve a great variety of problems where 
learning is an important factor to search a solution.  

The use of the kit Lego MindStorm was 
appropriate for the construction of the robot's 
prototype, because it allows build easy and quickly a 
great variety of adaptive robots' models to diverse 
problems. In particular, it is necessary to highlight 
that the rotation sensor possesses a remarkable 
accuracy in the measured values. In contrast with the 
light sensors whose readings were affected by 
external factors as the environmental light. A 
disadvantage of the kit is the quantity of inputs or 
sensors that has the robot. It allows connect only 
three sensors at the same time, limiting the 
functionality of the robots and the complexity of the 
program that is implemented. Also, it possesses a 
limited memory (32Kb), what do not allow 
implement very extensive programs. Also, the 
firmware, occupies space in the memory, 
diminishing even more the capacity to store user's 
programs. 

With regard to the operating system (firmware), 
the election of LejOS was convenient for several 
reasons. In the first place, this only occupies 16 KB 
of the memory, leaving available the remaining 
16KB of memory for user's programs. BrickOS 
(legOS) occupies 20 KB, leaving 12 KB of memory 
for user's programs. In second place, LejOS it is a 
firmware based on the programming language Java, 
inheriting the potent capacities that this language 
provides. 

The navigation problem to find a goal is possible 
to solve using a reinforcement learning algorithm. 
Other types of learning techniques exist, as the 
evolutionary learning that involves the use of genetic 



algorithms and that can be used to solve navigation 
problems. These algorithms are slow and they only 
allow approximate to sub-optimal solution, without 
any guarantee of the convergence to the best 
solution. They do not operate on real time execution, 
being a restrictive factor for the implementation of 
this type of problem. 

 Value Iteration, as Q-Learning, is based on the 
principle of the dynamic programming, which allows 
carry out an effective learning through recompenses 
and penalizations. The advantage of using Value 
Iteration is that the found solution tends to be, in 
most of the cases, better than the solution found with 
Q-Learning. 

The main disadvantage of the Value Iteration 
algorithm is that it only can be applied in action-state 
schemes where an action taken in a given state, leads 
the same successor state. If the goal changes 
position, the algorithm takes much more time, since 
all the roads that have been taken and then learned 
by the robot, these will always be taken even still 
when the goal is located in some other point.  

With regard to Q-Learning, the main advantages 
of using this algorithm are that if the goal changes 
position, Q-Learning adjusts its learning efficiently, 
being able to always arrive to the goal. Besides if the 
Q-Matrix is initialized with random values, the robot 
can experience other roads that enlarge his learning. 
This is because the algorithm looks always for the 
maximum Q-value for all possible actions in a state. 
Finally, the learning curve tends to converge in 
quicker way that Value Iteration, although in a less 
uniform way. 

The main disadvantage of using Q-learning is 
that the solution found is not always the best one, 
although it tends to be very near of it. 

In this point one could wonder under what 
conditions one of these two reinforcement learning 
algorithms should be chosen? The answer comes 
given depending on the situation. If the time to 
arrive to the goal is not a problem, you can apply 
Value Iteration, otherwise Q-Learning is the best 
option. However, for both cases, the route that finds 
Value Iteration is similar to the route that finds with 
Q-Learning, varying very little with respect to the 
other one. 

When programs are designed based on 
reinforcement learning algorithms, it is necessary to 
define and to design in a detailed way the states, 
actions and the reward policy, since these factors 
play a very important role in the operation of the 
algorithm. If some of these factors flaw, the acting of 
the algorithms can be seriously affected, or worse, it 
could not arrive to any solution. 
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