
AUTONOMOUS NAVIGATION ROBOTIC SYSTEM TO
RECOGNIZE IRREGULAR PATTERNS

Keywords: Autonomous Mobile Robots, Learning Algorithms, Artificial intelligence.

Abstract: This paper presents an approximation of navigation problem under unknown environment using
reinforcement learning. The motivation is to represent a robot that can move in a world with streets and
intersections. Each intersection has a different quantity of streets (irregular blocks). The selected algorithms
were Q-Learning and Value Iteration. The robot was programmed only with Q-Learning and we developed
a simulation with both of them. This simulation allows making comparisons in order to determinate in
which situation each algorithm is appropriate.

1. SYNOPSIS

This paper presents a particular application for
unknown environment using two techniques of
reinforcement learning. These algorithms allow an
autonomous agent or robot, to reach a goal by
learning the environment. In our case, the world is
formed by blocks of irregular geometric forms. The
robot does not know a priori the world but he learns
to identify it. The robot only knows previously the
location of the goal, given in terms of coordinates (x,
y).

The reinforcement learning algorithm selected
for the robot was Q-Learning. This algorithm
consists on rewarding or penalizing each possible
action that the robot executes. Given a policy, the
robot is able to reach a goal, learning by trying and
testing.

The simulation was developed using Q-Learning
and Value Iteration in order to test these algorithms
in different worlds. It allows comparing them under
different situations, either changing the form of the
blocks of the world, or changing the position of the
goal.

The robot was built with a Lego Mindstorm 2.0
kit with two light sensors and one rotation sensor.
The selected language for robot application was Java
under Lejos platform and the simulation was
developed in Visual Basic.

1.1 Justification

The problem arises when an agent need to be
located in an unknown environment. For example, in
Caracas, Venezuela, most of blocks are rectangular
and the movements are given in right angles.
However, in other places, blocks can be of irregular
forms and it is possible to end up losing the sense of
the orientation. If an agent do not know to move in
places where blocks are irregulars, it is necessary a

new learning process that can make the task of
recognition of these patterns. It can be able to go
from a point to another without to get lost.

2. REINFORCEMENT LEARNING

The reinforcement learning uses recompenses
and penalizations when the agent executes an action
in order to reach the goal. In reinforcement learning
an agent interacts with their environment. This
interaction allows the agent, based on sensor inputs,
chooses an action to be carried out in the world.

The learned behavior contains the robot's
implicit world model. By using reinforcement
learning it is not needed to have examples to build
and to validate the behavior (like supervised
learning). The behavior is synthesized using a scalar
(reinforcement) as the only source of information.
This information allows evaluate the action. The
agent receives positive, negative or null
reinforcements according situations and action
selected. There is not separation between the
learning phase and the using phase.

In this work, the world is inaccessible a priori to
the robot (it must learn the world), recompenses are
received in any state or situation, and the robot is a
passive apprentice (it does not alter the world).

2.1 The reinforcement and value
functions

In reinforcement learning must be defined a
reinforcement function. This is a function of the
future reinforcements that the agent searches to
maximize. In other words, a relationship exists
between the couple state/action with the
reinforcements. After carrying out an action in a
state, the agent will receive some reinforcement

(reward) given as a scalar value. This reinforcement
defines the value function. The agent learns how to
maximize the sum of the received reinforcements
when begins from an initial state and proceeds to a
terminal state.

The value function is based on a field of the
mathematics called dynamic programming. To
explain it, some notations is needed: V*(xt) is the
optimal value function, where xt is the vector of
states; V(xt) is an approximation of the function
value; γ is the discount factor in the range of [0,1]
that causes that the immediate reinforcement has
more importance than the future reinforcement. In
general, V(xt) can be initialized with random values
and it does not contain information about the optimal
value function V*(xt). This means that the
approximation of the optimal value function in a
given state is similar to the value of that state given
by V*(xt) plus some error in this approximation. The
following equation (1) express this idea:

V(xt) = e(xt) + V*(xt) (1)

where e(xt) is the error in the approximation of the
value, in this state, in the time t.

The value of the state xt follow a policy that is
the sum of the reinforcements when it begins of the
state xt and carrying out good actions until a terminal
state is reached. For this definition, a simple
relationship exists between the values of the
successive states xt and xt+1. This relationship is
expressed by the Bellman equation (2). The discount
factor γ is used exponentially for decrement the
weight of the reinforcements received in the future.

V(xt) = r(xt) + γV(xt+1) (2)

The process of the learning is the process to find

a solution for the equation (2) for all the states xt,
through the space of states. If there are not changes
in the state values, then the state values have
converged.

2.2 Value Iteration

One can find an approximation to optimal value
function evaluating for all possible state since xt. In
equation (3), u is the action performed in state xt and
cause a transition to state xt+1 and r(xt,u) is the
reinforcement received when performing action u in
state xt.

V(xt) = maxu (r(xt,u) + γV(xt+1)) (3)

The figure 1 illustrates this process.

Figure 1: Tree of states for Value Iteration

The previous figure describes how update the

value in xt. Specifically, there are two possible
actions in the state xt, and each one of these actions
directs to different states successors xt+1. To update
in Value Iteration, it should find the action that
returns the maximum value (BFS algorithm). The
only way to achieve this is by executing an action
and calculating the sum of the received
reinforcement and the approximate value of the state
successor xt.

2.3 Q-Learning

Q-Learning is another extension to the traditional
dynamic programming that solves the problem more
simply. Value Iteration requires finding the action
that the maximum prospective value returns (the sum
of the reinforcement on all the possible states
successors for the given action).

Q-Learning differs from Value Iteration in that it
does not require in a given state each action be
performed and the expected values of the successor
state be calculated. While Value Iteration executes
BFS, Q-Learning takes a single step sample. It only
needs to be the maximum value in the new state to
have all the necessary information to revise the
prediction associated with the executed action. Q-
Learning does not require to calculate on all the
possible successor states. This process is
demonstrated in figure 2:

Figure 2: Tree of States vs. Actions

In Q-Learning each situation-action has a value

(called Q-value). In each state, there is a Q-value
associated with each action (a matrix). The
definition of the Q-value is the sum of the received
reinforcements when the action is executed
following a policy. So Q-Learning represents values
with a matrix instead of Value Iteration that
represents it with a vector (only a value for each
state).

The Q-value of a state should approximate the
maximum Q-value in the given state. In this case, it
is easy to derive the equivalent of the Bellman
equation (4) for Q-Learning:

Q(xt,ut) = r(xt,ut)+ γ maxut+1(Q(xt+1,u t+1)) (4)

After the execution of the action for the robot in

the real world, a reinforcement function provides a
reinforcement value. It can take +1,-1 or 0 values. It
is used by the update function to adjust the
recompense value (Q) associated to the situation-
action in the robot's memory.

2.3.1 Q-Learning Algorithm

In this application, the algorithm was modified
including ß factor. β represents the learning rate and
it should be bigger than 0. The algorithm steps are:

1. Initialization of the robot's memory: for all the

situation-action couples, the Q-values are zero. It
also could be initialized with random values.

2. repeat
a. x is the situation of the world.
b. The evaluation function selects the action to be

executed: x = Max(Q(x,u'))
 where u' represents any possible action. The

selection process depends on the distance to the
goal.

c. The robot executes the action u in the world. Be
r the recompense (r can be 0) associated with
the execution of that action in the world.

d. Updates the robot's memory:

Qt+1(x,u) = Qt(x,u) + ß (r + γ max(Qt(x', u')) - Qt(x,u))

 where x' is the new situation after having been

executed the action in the situation x, u'
represents any possible action.

This algorithm was implemented in Java: LejOS

(Lego Java Operating System) and is executed by
the robot when it navigates in the world.

3. APPLICATION DEVELOPPED

3.1. Analysis

This work was developed in order to ask the
following questions:

(1) Which characteristics should have the world

where the robot is unwrapped?

The idea is to learn how can be guided a
robot in a world whose blocks form are
ignored by the autonomous entity.

(2) What reinforcement learning algorithms
should be implemented?
Q-Learning and Value Iteration are the most
popular algorithms. It should be interesting
compare these algorithms under different
constraints.

(3) How do apply Q-Learning and Value
Iteration to our application?
In order to navigate problem, the robot is
rewarded if this comes closer to the goal
and it is punished if it moves away from
him.

(4) Which operating system (firmware) is
appropriate to program the robot?
There are four possible operative systems to
program the robot: BrickOS (well-known
previously as legOS), NQC, the Robotic
Invention System (RI), and LejOS. The last
one is based in JAVA, so highly Object
Oriented, the maintenance is easier than in a
language structured as C and it is also
available for a wide variety of platforms.

3.2 Design

It should be convenient to design and to prove
different types of physic structures for the
autonomous entity (robot), in order to define and to
build the environment and finally to adjust the
algorithms Q-Learning and Value Iteration.

3.2.1 Robot Design

The first problem that was presented was the
accuracy of the movements and the turns, since the
robot should make turns on his owns axis and
movements along the streets or roads. If errors are
present in the turn, the robot takes a wrong road,
harming in a significant way the execution of the
algorithm.

Due to the inaccuracy in the movement, we used

a dual differential drive, such as it shown in the
figure 3.

Figure 3: Transmission system with dual differential

drive

In this system, a motor takes charge of moving
the robot straight line (forward or back), while the
second motor takes charge of carrying out the turns
(toward the left or toward the right), and one of the
motors should only work at the same time, both
cannot work at the same time. The advantage of
using this system resides in that both wheels work to
the same speed maintaining a uniform movement.

Once resolved the problem of the accuracy of the
movements, initially it was planned to use
caterpillars, but these produced an undesirable effect
in the turns, since these spread to move toward the
sides. After proving with several types of
configurations we made the decision of using two
wheels behind and a stabilizer piece in front of the
robot. This piece acts as a ski, minimizing the close
contact with the floor and achieving a stable
movement as much in the turns as in the right
movements.

In order to capture the events of the environment,
a study was made to define what kind of sensors
would be used for such an end. Initially it was
planned to use three ultrasonic sensors, placed one in
the robot's front part, and the other ones two in the
lateral sides of the same one. However, serious
inconveniences arose since with the sensors the
readings, in many cases, they didn't reflect the real
situation, for example, when it happens a
phenomenon called speculate reflection.

It was adopted two sensor of light under the
robot pointing toward the floor and a rotation sensor.
This solves part of the problems mentioned
previously, as the recognition of roads and
intersections. The sensor of light maintains adjusted
the robot to the road because that, if the road is of a
certain color, for example blue, and then it detects
another color, for example white, is adjusted to
follow the road. The rotation sensor allows to know
how many degrees the robot has rotated, being an
important element for the robot's navigation. It could
obtain an error of ±10º.

Finally the last sensor of light was placed
pointing to the floor in the robot's front part, which
allows to detect in a quick and simple way how
many roads are in each intersection. Lastly, the
robot's physical construction is:

Figure 4: The robot's final version

3.2.2 Environment

Once concluded the robot's physical structure,
we proceeded to the construction of the world. With
the elimination of the sonar, we decided to eliminate
the walls and to identify background, roads and
intersections with the white, blue and black color,
respectively.

Figure 5: World types. a) With walls. b) Without walls

3.2.3 Q-Learning adaptation

Firstly, it is necessary to learn how to arrive to a
specific point of the map from a beginning point. In
each intersection it should be decided among a series
of roads, some move away the robot of the goal,
other brings near it and some even maintain the same
distance from the goal. If an action in that state
brings near the robot of the goal, this action it should
be rewarded, while if the robot goes away, the action
should be penalized. The autonomous entity should
learn how to arrive to its destination choosing the
actions that offer a bigger recompense.

Q-Learning requires to elaborate a matrix
(mainly called Q-Matrix) of actions against states.
The actions in this case are: rotate a specific angle
and to move straight . The figure 6 shows some of
the possible actions that the robot can take in an
intersection with three ways:

Figure 6: Actions that the robot can carry out in an

intersection type

In this point, the robot can rotate toward the road
that is at 30°, 150° or 270° with regard to the
horizontal. In the Q-Matrix, these actions are
denominated by the value of the angle that should be
rotated.

The states represent situations that can happen in
the robot's interaction with the world and they can be
directly the values read by the sensors, combinations
or derived abstractions of the readings of the sensors
or robot's internal representations.

The proposed design of states was one where the
robot built a coordinated system where the origin is
the starting point (Figure 7) and the coordinates of
the goal are already fixed and known previously by
the robot. Using these references, and trigonometric
calculations, the distance is calculated between the
robot and the goal or objective.

Figure 7: System of coordinates used by the robot

It is also necessary to know where is the robot

with respect to the goal (if it is above, below, to the
right or to the left of the goal). To obtain that
information, the coordinates of the goal are
subtracted with the robot's coordinates, for example,
if the subtraction of the abscissas and the coordinates
are negative, the robot is above and to the left of the
goal (quadrant I of the figure 8).

The combinations between the quadrants and the
differences among the distances from the robot to
the goal define the states. In the table 1, all the
possible states are shown where dant indicates the
distance from the robot to the goal when it was in the
previous intersection. dact indicates the distance from
the robot to the goal in the current intersection.

Figure 8: The robot's position with regard to the goal

State Quadrant Distance

0 1 dant < dact

1 1 dant > dact

2 2 dant < dact

3 2 dant > dact

4 3 dant < dact

5 3 dant > dact

6 4 dant < dact

7 4 dant > dact
Table 1. Possible States for the Q-Matrix

Finally, the Q-Matrix (table 2) was built using
the states mentioned previously, and they took the
actions as the angles from 0° up to 360° numbered of
10 in 10 (rotation sensor precision), that is to say, 0°,
10°, 20°, etc. The lines are the states and the
columns are the actions.

State\Action 0 10 350 360

0 0,48 1 0,93 0,23

1 0,70 0,60 0,67 0,37

2 0,97 0,45 0,23 0,87

3 0,65 0,74 0,62 0,34

4 0,10 0,76 0,34 0,73

5 0,29 0,56 0,89 0,66

6 0,69 0,77 0,83 0,65
Table 2. Q-matrix

Each state has associated a series of angles that

represent the possible actions. For example, if the
robot arrived to an intersection that brought near it to
the objective and it is in the quadrant 3, the state that
represents this action is the state 5 (to see table 1 of
states). Once identified the state, determines the
action that it will take looking for the biggest value
in the line for that state. In the table 2, it can be
appreciated that the maximum value for the state 5
corresponds to the angle of 350° for what the action
that the robot will take will be the one of rotating up
to 350° to move later on straight line until the next
intersection. These value used to determine the
maximum, Q-values, represent the utility of a couple
(state/action).

Once done this and coming to the following
intersection, the robot identifies the state again. It
calculates the recompense of the action taken in the
previous state. A positive recompense takes place
when the robot executes an action that brings near it
to the goal, rewarding it. While a negative
recompense takes place when instead of coming
closer to the goal this goes away, for what the
executed action is penalized (figure 9). With the
calculated recompense, the Q-value is updated
(value in the Q-Matrix) corresponding to the couple
(previous state-action) modifying the values that can
affect to future decisions for that state.

Figure 9: Rewards of the possible actions that the

robot can take

3.3 Implementation

Q-Learning simulation uses the following classes:
• RotationNav.java: carries out the robot's

movements and the turns, to move from a point to
another, etc. Uses the rotation sensor to know
what angle is with regard to the horizontal.

• Qlearning.java: calculates the robot's states, to
reward the actions taken in each state and of
storing in the Q-Matrix, all that has to do with the
robot's learning.

• Huron.java: manages and coordinates all the calls
to the other two classes explained previously.

Value Iteration and Q-Learning algorithms were
programmed in the simulation, to be able to make
the comparisons among them. It is pertinent to
expose first how Value Iteration can be applied to
the navigation problem. In Value Iteration the taken
actions in a state always take the same successor
state, while in Q-Learning, the taken action in a state
could be anyone of the other states that is not always
the same one. For this reason, we had to change the
approach of actions and states so that Value Iteration
could be applied.

The approach of actions is the same that was
used for Q-Learning, but the states were
implemented in a different way. It was opted to
represent the states like the intersections of the main
map, identified by whole numbers. Once defined the
states and actions, it is necessary to proceed to
elaborate the base of knowledge. The algorithm only
needs to know the utility (V-Value) for state:

 1 2 3 …. 49 50

1 V(1) 90 30 …. -1 -1

2 270 V(2) -1 …. -1 -1

3 190 -1 V(3) …. -1 0

…. …. …. …. …. …. ….

49 -1 -1 -1 …. V(49) 0

50 -1 -1 -1 …. 180 V(50)
Table 3. Knowledge base used

The approach of rewards stays similar to Q-
Learning, if the robot comes closer to the goal this it
is rewarded but if the robot goes away it’s penalized.

The application of Value Iteration is relatively
simple. When the autonomous entity arrives to a new
intersection, it evaluates the different roads that can
take in that an intersection. Then it evaluates how is
the reward that receives for each possible road,
added with the V value from the state, which arrives
if it executes that action. Once carried out all these
operations, the road is chosen whose sum is the
biggest, V-Value of the current node is substituted
with that of the selected road and takes this road, and
repeat all the steps mentioned previously in this
paragraph until it finds the goal.

Because the learning is carried out in each state,
the robot considers that he has learned in that state
when the value previous V doesn't differ of the value
current V, the error among them is zero.

3.4 Tests

In this last phase was carried out successive tests
for the detection of error. The robot's acting was
observed in the environment and the behavior of the
algorithm Q-learning applied for the navigation.

Nevertheless, the principal objective in this
phase is to establish the comparisons among Value
Iteration and Q-Learning, using the simulation. It is
important to mention that a iteration begins with the
robot in the starting point and it concludes when this
arrives to the goal. Each run can have associated a
finite number of iterations.

The Q-Learning reinforcement learning
algorithm showed to be a good option for the
navigation problems. In several runs with the built
robot it could be observed that the algorithm was
able to reach the goal most of the times. There were
movements those performance was affected by
random external events and the errors that were
presented in the readings of the sensors of light.

With regard to the simulation, the algorithms Q-
Learning and Value Iteration, one could observe the
behavior of each one in an ideal world. In this way,
we can carry out comparisons between both
algorithms, avoiding the problems with the
inaccurate of the sensors. Also, modifications can be
made in certain parts of the algorithms, without
altering the logic of them.

The quantity of iterations indicates how many
times each one of the algorithms were executed.

Test 1
There was carried out a run of 20 iterations,

maintaining the goal fixes, with each one of the two

algorithms to see how it was the learning curve in
both cases. The obtained graph was the following
one:

0

1

2

3

4

5

6

0 5 10 15 20 25

I t e r a c i o n e s

Q-Lear ni ng Val ue I ter at i on

Figure 10: Learning curves of Q-Learning and Value

Iteration
Here one can observe that Q-Learning converges

in quicker way than Value Iteration, that is to say, it
takes less learning time to arrive to the goal. Even
though Value Iteration takes more time to learn, both
of them find efficiently the goal with the movement
policy.

Test 2

Since the Q-Matrix can be initialized with
random values or with values in zero, they were
carried out two runs where one of them was
initialized with random values and the other one
with zeros. The result was the following one:

0

2

4

6

8

10

12

0 5 10 15 20 25

Iteraciones

Ti
em

po
 (s

eg
)

Aleatorio Ceros

Figure 11: Learning curves of Q-Learning

You can infer of this graph that don't care values

with which the Q-Matrix is initialized, since always
it will converge in a similar way. The only thing that
could change is the time that takes in learning how
to arrive to the goal in the first iterations.

Test 3

Were carried out 2 runs of the Q-Learning
algorithm of 40 iterations each one, changing the
position of the goal after each 10 iterations and
maintaining it fixed during those 10 iterations. For
the first run we worked with the matrix initialized
with random values and for the second run the
matrix was initialized with zeros. The resulting
graph was the following one:

0
1
2
3
4
5
6
7
8
9

0 10 20 30 40 50

Iteraciones

Ti
em

po
 (s

eg
)

Q-Learning (Matriz Aleatoria) Q-Learning(Matriz Cero)

Figure 12: Learning curve of Q-Learning varying goal

Here we can observe that the behavior of Q-

Learning for both cases is similar, they are able to
almost establish the same time of arrival to the goal.
The peaks represent the point where the goal was
changed position and due to this, the algorithm takes
more time for the learning when trying to adapt to
the new change.

Test 4

Were carried out 2 runs of 40 iterations each one,
changing the position of the goal each 10 iterations.
For the first run we worked with the Q-Learning
algorithm and for second one, the algorithm Value
Iteration. The resulting graph was the following:

0

2

4

6

8

10

12

0 10 20 30 40 50

I t er aci ones

Q-Lear ning Value Iter ation

Figure 13: Learning curves of Q-Learning and Value

Iteration varying goal

As you can observe, Q-Learning adapts to the
changes in a quick way and like the previous graph.
However, Value Iteration, once had concluded the
learning of the route to the goal, when it change, the
new time that takes is equivalent at the time that
took in arriving to the position previous of the goal
plus the time that needs learn how to arrive to the
new position of the goal.

It is important to notice that Value Iteration, keep
the route in a state’s graph. It is affected critically if
it is forced to go by a node or intersection already
visited. Each intersection has assigned an action that
was been of the previous learning, what causes to
take the same road every time that arrives to that
state. It does not carried out the learning process for

that intersection, retarding the arrival to the new
position of the goal.

Test 5

Due to the previously exposed problem for the
Value Iteration algorithm and for the time that takes
learning how to arrive to the new goal. It was
decided to make a modification that consisted on
eliminating the condition of learning end, that is to
say that is carried out the learning process in each
node or visited intersection. For this case it were also
carried out 2 runs changing the position goal, of 20
iterations each one, using for the first one the Q-
Learning algorithm and for second one the Value
Iteration algorithm. The resulting graph is shown
next:

0
2
4
6
8

10
12
14

0 10 20 30 40 50

I t er aci ones

Q-Lear ning Value Iter ation

Figure 14: Learning curves of Q-Learning and Value

Iteration modified varying goal

We observed that there was not a significant
change in the behavior of Value Iteration, because it
follows the same behavior patterns of the previous
case, only that the learning was made in all moment,
in each intersection visited or not visited.

Test 6
Lastly, there was carried out a second

modification in the Value Iteration algorithm that
consisted in reinitialize the graph every time that the
position of the goal was changed, maintaining the
condition of learning end. Were also carried out 2
runs of 20 iterations each one, changing the position
of the goal and using for the first run the algorithm
Q-Learning and for second one the algorithm Value
Iteration.

0

2

4

6

8

10

0 10 20 30 40 50

I t er aci ones

Q-Lear ning Value Iter ation

Figure 15: Learning curves of Q-Learning and Value

Iteration modified varying goal

For this case, the algorithm Valued Iteration

adapted better to the changes of position of the goal,
but that in comparison with Q-Learning, it continues
taking more time of learning than the one used by Q-
Learning. The disadvantage of this is that no longer
keeps its knowledge if the robot should travel the
world again.

 It is necessary to highlight that the Value
Iteration algorithm always search the shortest route,
while Q-Learning only tries to arrive to the goal
according to a policy of movements product of the
learning. Occasionally, Value Iteration visited less
intersections than those visited by Q-Learning

4. CONCLUSIONS

Along this work, we studied different aspects of
the artificial intelligence applied to the area of the
learning, specifically the reinforcement learning.
They allow solve a great variety of problems where
learning is an important factor to search a solution.

The use of the kit Lego MindStorm was
appropriate for the construction of the robot's
prototype, because it allows build easy and quickly a
great variety of adaptive robots' models to diverse
problems. In particular, it is necessary to highlight
that the rotation sensor possesses a remarkable
accuracy in the measured values. In contrast with the
light sensors whose readings were affected by
external factors as the environmental light. A
disadvantage of the kit is the quantity of inputs or
sensors that has the robot. It allows connect only
three sensors at the same time, limiting the
functionality of the robots and the complexity of the
program that is implemented. Also, it possesses a
limited memory (32Kb), what do not allow
implement very extensive programs. Also, the
firmware, occupies space in the memory,
diminishing even more the capacity to store user's
programs.

With regard to the operating system (firmware),
the election of LejOS was convenient for several
reasons. In the first place, this only occupies 16 KB
of the memory, leaving available the remaining
16KB of memory for user's programs. BrickOS
(legOS) occupies 20 KB, leaving 12 KB of memory
for user's programs. In second place, LejOS it is a
firmware based on the programming language Java,
inheriting the potent capacities that this language
provides.

The navigation problem to find a goal is possible
to solve using a reinforcement learning algorithm.
Other types of learning techniques exist, as the
evolutionary learning that involves the use of genetic

algorithms and that can be used to solve navigation
problems. These algorithms are slow and they only
allow approximate to sub-optimal solution, without
any guarantee of the convergence to the best
solution. They do not operate on real time execution,
being a restrictive factor for the implementation of
this type of problem.

 Value Iteration, as Q-Learning, is based on the
principle of the dynamic programming, which allows
carry out an effective learning through recompenses
and penalizations. The advantage of using Value
Iteration is that the found solution tends to be, in
most of the cases, better than the solution found with
Q-Learning.

The main disadvantage of the Value Iteration
algorithm is that it only can be applied in action-state
schemes where an action taken in a given state, leads
the same successor state. If the goal changes
position, the algorithm takes much more time, since
all the roads that have been taken and then learned
by the robot, these will always be taken even still
when the goal is located in some other point.

With regard to Q-Learning, the main advantages
of using this algorithm are that if the goal changes
position, Q-Learning adjusts its learning efficiently,
being able to always arrive to the goal. Besides if the
Q-Matrix is initialized with random values, the robot
can experience other roads that enlarge his learning.
This is because the algorithm looks always for the
maximum Q-value for all possible actions in a state.
Finally, the learning curve tends to converge in
quicker way that Value Iteration, although in a less
uniform way.

The main disadvantage of using Q-learning is
that the solution found is not always the best one,
although it tends to be very near of it.

In this point one could wonder under what
conditions one of these two reinforcement learning
algorithms should be chosen? The answer comes
given depending on the situation. If the time to
arrive to the goal is not a problem, you can apply
Value Iteration, otherwise Q-Learning is the best
option. However, for both cases, the route that finds
Value Iteration is similar to the route that finds with
Q-Learning, varying very little with respect to the
other one.

When programs are designed based on
reinforcement learning algorithms, it is necessary to
define and to design in a detailed way the states,
actions and the reward policy, since these factors
play a very important role in the operation of the
algorithm. If some of these factors flaw, the acting of
the algorithms can be seriously affected, or worse, it
could not arrive to any solution.

REFERENCES

Bagnall, B. 2002, CORE Lego MindstormsTM
Programming. Edit. Prentice Hall PTR. New York,
United States of America.

Ferrari, G., Gombos, A. Hilmer, S., Stuber, J., Porter, M.,
Waldinger, J. and Laverde, D. 2002, Programming
Lego MindstormsTM with Java. Edit. Sysgress.
United States America.

Rich, E. and Knight, K. 1994, Artificial Intelligence.
Second edition. Edit. McGraw Hill. Madrid.

Russel, S. and Norvig, P. 1996, Artificial Intelligence A
modern approach. First edition. Edit. Prentice Hall,
1996.

Pressman, Roger S. 1998, Engineering of the Software a
practical focus. Fourth edition. Edit. McGraw Hill.
Madrid, Spain.

Carrasquero Z., Oscar H. and McMaster F., Eduardo 2002,
Design and a robot's construction with the module
RCX 1.0 for not predetermined worlds (Thesis of
Engineer in Computer, Catholic University Andrés
Bello).

Bagnall, Bryan 2001, LejOS: Java for the RCX. [web page
on-line] Consulted in 10/5/2003 Available in
http://lejos.sourceforge.net /.

BrickOS Home Page. [web page on-line] Consulted in
2/5/2003 Available in http://brickos.sourceforge.net /.

Dartmouth College Computer Science Department (2001).
Robbery-Rats Locomotion: Dual Differential Drive.
[web page on-line] Consulted in 20/5/2003 Available
in
http://www.cs.dartmouth.edu/~robotlab/robotlab/cour
ses/cs54-2001s/dualdiff.html

Gross M., Stephan V. and Boehme J. 1996, Sensory based
robot navigation using self-organizing networks and
Q-Learning. [document on-line] Consulted in
12/9/2003 Available in
http://citeseer.nj.nec.com/gross96sensorybased.htm

Mance E. Harmon and Stephanie S. Harmon (s.f.).
Reinforcement Learning: A Tutorial. [document on-
line] Consulted in 20/9/2003 Available in
http://www.nada.kth.se/kurser/kth/2D1432/2003/rltut
orial.pdf.

Touzet, Claude F. 1999, Neural Networks and Q-Learning
for Robotics. [document on-line] Consulted in
3/9/2003 Available in
http://avalon.epm.ornl.gov/~touzetc/Publi/Touzet_IJC
NN_Tut.pdf.

Zou Yi, Ho Yeong Khing, Chua Chin Seng and Zhou Xiao
Wei 2003, Evidence method in ultrasonic sensor
coalition for mobile robots. [document on-line]
Consulted in 10/8/2003 Available in
http://www.duke.edu/~yz21/research/YZ_IASTED-
MIC2000.pdf.

