
Distributed Platform for Control of Robots at Distance

Daniel E. Vera Gonzalez
Universidad Católica Andrés Bello

Caracas, DF 1080, Venezuela

and

Wilmer Pereira
Universidad Católica Andrés Bello

Caracas, DF 1080, Venezuela

I. Abstract

This project consists of making a research about how JINI
technology can control a device remotely. These devices are
controlled through a local network and different platforms.
However this project is limited to work with a robot that
represents these devices.

The main objective of this investigation is to construct an
application that allows interacting with a robot from JINI
technology. Specifically is used the Robotics Invention System
of Lego Mindstorm. Lego Mindstorm allows to construct robots
that work in a specific environment.

JINI is a network technology. It helps to make the network more
flexible because facilitates using and administrating labors. JINI
follows a client/server model. Server publishes the services and
clients obtain these services to use them.

In this document once is made an analysis of the necessary
tools, an experiment is made. This experiment includes a robot
able to explore a specific land in search of obstacles. This robot
is remote control by an application that simultaneously is
controlled by an operator located in the network. This operator
aside from manipulating the robot can visualize the land
composition. This allows the operator to see if there are or not
obstacles in the surface and to know where these are located.
Also there are certain numbers of users waiting for the resource.
These users can visualize the exploration done by the operator.
The user can act as operator once the resource is released.

II. Objectives

1. Investigate and study JINI technology.
2. Investigate and study Java, especially using RMI (Remote

Method Invocation).
3. Investigate and study devices compatibles with Lego

Mindstorm.
4. Design a JINI component, this should allow interacting with a

robot.
5. Make some experiments. These experiments have to establish

an opened JINI and robot communication. Specifically, the
experiment consists in develop a remote application. This
application must be able to control and receive information
from a robot. This robot must explore a limited land and
identify the exact obstacles position within this area.

6. Design and build a robot that could fulfill with objectives
named before.

III. Important Information

RMI (Remote Method Invocation)

In this section is presented short information about RMI. RMI is
the main mechanism of communication used by JINI
Technology. Therefore, also is used in this project in order to
invoke methods that allow manipulating the robot remotely.

The basic idea of RMI is that objects running in a single JVM
(Java Virtual Machine) are able to invoke methods in others
JVMs. Also, each JVM can be located in the same machine or
different machines connected to a network.

The RMI architecture consists of three layers: Stub layer (client)
and receiver object (server), Remote Reference layer and
transport layer (figure 1).

Figure 1: RMI Architecture

Stub: It’s an Interface between client application and remote

object. Its responsibilities are: to initialize the calls to the remote
object, to serialize arguments to send them through the network,
and deserialized the arguments given back in the calls.

Receiving Object: It’s in charge of translating invocations of
the remote reference layer, as well as to manage the answers.
Between its activities they stand out: to deserialize the
arguments, to make calls to the remote object methods, and to
serialize the return values.

The remote reference layer: It’s responsible of implementing
the communication policy. This can be represented by different
types: invocation unicast point -point, strategies of reconnection.

The transport layer: It’s responsible for the establishment and
maintenance of the connection, to take care of incoming calls,
and to establish the communication for the incoming calls.

Figure 2: Method invocation process in RMI

As shown in figure 2, the client invokes the method from the
object stub located in the local JVM. This object is in charge to
serialize the parameters in order to send them to the receiver
object. The receiver object invokes the method locally. Once it
obtained the result or the corresponding exception, the receiver
object sends value to the stub object. At the end the Stub
deserialize the result and returned it to the client.

JINI Technology

As mentioned before, the experiment is based in a remote
control of a robot using JINI Technology. To make the
experiment successfully we have to know a little bit about how
JINI works. Following are mentioned the most important
concepts of JINI Technology. These concepts will be used after
this chapter to describe some characteristics of the experiment.

The JINI Technology is based on a simple concept: devices
should work together. They should interconnect without
problems, drivers, operating systems problems, and wires or
strange connectors. Sun Microsystems (2000).

Figure 3: JINI System Overview

As show in figure 3, a JINI system is a distributed system based
on the idea of federating groups of users and the resources
required by those users. The overall goal is to turn the network
into a flexible, easily administered tool with which human and
computational clients can find resources. Resources can be
implemented as hardware devices, software programs, or a
combination of the two. The focus of the system is to make the
network a more dynamic entity that better reflects the dynamic
nature of the workgroup by enabling the ability to add and delete
services flexibly.

JINI Technology has many important elements. These elements
are shown as follow:

Services: the most important concept within the JINI
architecture is that of a service. Sun Microsystems (2000) define
a service as an entity that can be used by a person, a program, or
another service. A service may be a computation, storage, and a
communication channel to another user, a software filter, a

hardware device, or another user. Two examples of services are
printing a document and translating from one word-processor
format to some other.

Lookup service: Services are found and resolved by a lookup
service. Sun Microsystems (2000) The lookup service is the
central bootstrapping mechanism for the system and provides
the major point of contact between the system and users of the
system. In precise terms, a lookup service maps interfaces
indicating the functionality provided by a service to sets of
objects that implement the service.

Protocols: Sun Microsystems (2000) express that the heart of
the JINI system is a trio of protocols called “discovery”, “join”,
and “lookup”.

1. Discovery: occurs when a service is looking for a lookup

service with which to register. (figure 4).

Figure 4: Discovery

2. Join: occurs when a service has located a
lookup service and wishes to join it.
(figure 5)

Figure 5: Join

3. Lookup: occurs when a client or user needs to locate and

invoke a service described by its interface type (written in
Java) and possibly other attributes (figure 6).

Figure 6: Lookup

Once the client gets a service object, it could invoke that service
directly without a lookup service.

Lego Mindstorm

Once known the entire network mechanisms used in the
experiment, it’s necessary to briefly know what Lego
Mindstorm is and what its main components are.

The main component is the RCX, which is the brain of the
system (shown in figure 7). It can be programmed from a
computer. The computer transmits the programs to the RCX
from a wireless communication using infrared signals.
According to Dave Baum (2000) the RCX can be divided in
three layers: hardware layer, system ROM layer, and firmware.

The hardware layer is a device’s bottom layer. It’s composed by
following mechanisms: a microcontrol or CPU, a screen or
LCD, Memory. Also it can use up to three independent motors
and four different types of sensors (Touch sensor, light sensor,
rotation sensor, and temperature sensor) (figure 7).

Figure 7: RCX components

Actually, there are a lot of firmwares. Some of them are
firmware standard, LegOS, and pbForth. In this experiment is
used firmware standard. This is because reasons explained in
later sections.

The Standard Firmware is used when programs are written using
anyone of compatible environments (code RCX, NQC, Robolab
or Spirit.ocx).

The standard firmware has different types of programming. The
main ones are: using NQC and code RCX (used by Lego
Mindstorm software).

Although the use of these tools (NQC, Lego Software)
facilitates the RCX’s programming, these tools can’t make
advanced tasks like controlling the RCX on real time. For this,
it’s necessary to transmit RCX’s pure code from the computer
thus allowing to manipulate the device in a while given. Kekoa
Proudfoot (1998-1999) deciphered the codes necessary to
control the RCX from the computer using firmware standard.

In order to be able to send these commands, it’s necessary to
install a program that allows manipulating computer’s serial
ports. Also is required a program that allows to transmit RCX’s
commands using RCX communication protocol. At the moment
in Internet exists some programs able to establish this
communication, among them “send.c” created by Kekoa
Proudfoot (http://graphics.stanford.edu/~kekoa/rcx/tools.html)
and “rcx.jar” created by Dario Laverde
http://www.escape.com/~dario/java/rcx

IV. Implementation

In this project was used the Unified Process methodology. It
was proposed by Booch, Jacobson and Rumbaugh (1999). In
This way the project is divided in four main stages: Inception,
Elaboration, Construction and Transition. In figure 8 is shown
every phase and each iteration.

Figure 8: Phases and iterations of project development

Inception Phase

Development:

• Several meetings where established with specialized people in

the area of robotics and nets. These meetings helped to
proposed some experiments that allowed to show all
functionalities of JINI technology.

• Several remote interviews with expert people of JINI
technology and Lego Mindstorm. Some of them are engineer
Iain Shigeoka a list distribution member of Sun Microsystems
and Kekoa Proudfoot experts of Lego Mindstorm technology.
This allowed to know the experiment feasibility and every
opinion of each one of these people about the project

Results:

• The main objective of the experiment must be a constant

communication between user(s)-robot. This allows evaluating
the communication between devices through JINI
Technology. For this same reason A.I. (Artificial intelligence)
are not gotten up in the project.

• The application must be able to remotely control and visualize
the robot’s actions on an efficient way. This must support a
considered client’s number. The clients can accede at the
same time to the system. The client application should has
Aspects of graphical interface to facilitate learning process.

• All user located in the local network (LAN) can control the
robot. The application must administer the accesses of these
clients and obtain that all of them can control the robot.

• The minimal necessary resources for the execution of the
experiment are: a computer that works like client and server, a
robotics Invention system of Lego Mindstorm including a
touch sensor, two motors, and two rotation sensors.

• The robot must move by the land in search of possible
obstacles. It will be remote-control from a place within a local
network. The robot has to recognize all obstacles by crashing
with them.

• The land must be uniform, preferably smooth.
• Just one user can control the robot in a while (mutual

exclusion). In order to obtain this, a waiting line has to be
implement. This line allows the user who has been more time
in delay to obtain the resource to control the robot (once the
operator has released or lost the resource).

Elaboration Phase

Investigation and design of the local components (Iteration
1)

Development: In this iteration, the work focuses in investigating
and designing necessary components for a robot manipulation
locally. There are many activities made in this stage. Some of
them are:

• Searching information in bibliography and Internet about

Lego Mindstorm.
• Studying different ways of RCX´s programming
• Obtaining firmware.

Results:

• Concluding about using standard firmware better than LegOS.

In order to be able to control the robot in a while given, it’s
necessary to send signals from the computer to the RCX
while the robot is exploring the land. LegOS has a
denominated communication protocol LNP (Lego Network
Protocol) that allows to send and to receive messages to the
RCX from the computer. Although this can control the robot
in a given period of time, exists one application that obtains
it at the moment, but is written in C language. JINI supports
only services and clients who run in JVMs which rejects this
possibility. However, standard firmware has an application
developed in Java by Dario Laverde who allows to send code
RCX and control it in a while given.

• Definition of what kind of command has to send from the
infrared tower to the RCX. Reached the conclusion that the
programs had to be stored in the RCX. Then these programs
are executed from the computer sending code RCX. The
exploration results are received by the user checking the
sensors’ state from the computer.

• Obtaining different robot’s designs which can evaluate the
displacement of rotation sensors versus displacement per
time. Also it’s desired to evaluate the RCX position
(Horizontal or Vertical).

• Obtaining a local architecture.

Investigation and design of remote components (Iteration 2)

Development: In this iteration is investigated and designed all
components of technology JINI. These components were able to
remotely manipulate the robot. Between the activities are:

• Running practical examples obtained from Internet. These

were observed at http://www.jini.org. Also were studied
projects made by Jan Newmarch (2001) who had worked
jointly with Lego Mindstorm and JINI.

• General Configuration of JINI environment. This includes an
execution of a Lookup server, and development of a client
and server able respectively to obtain and to publish a service

• Design of the application’s Interface.

Results: The most important result of this stage is a distributed
architecture shown in figure 9:

Figure 9: Distributed system architecture.

Construction Phase

This phase is formed principally by three essential processes.
The first one is the development or programming code. Then all
unit tests of each component. At last, the redesign of all
components if necessary.

Locally components development and test (Iteration 1)

Development:

• Firmware installation. This firmware is the standard Lego

version 1.0.
• Construction and test of different robots. This should be made

taking care of the results obtained in the preview phase. The
test of each robot is made according to three specific
programs: the first program moved forward the robot until it
encounters an obstacle. The second and third program moved
the robot 90 degrees to right and left respectively. The design
which has the best performance would be the definitely
prototype. In this step is also evaluated the robot movement
by rotation sensors Vs. time movement as RCX’s position.

• Environment’s construction where the robot will work.
• Robot’s programs development that permits fulfill the device

exploration.
• Installation of javax.comm. and rcx.jar packages.

Results:

• Selection of the Omega Centaury robot-design. As can be

observed in figure 10, this robot has in its front a touch sensor
able to recognize any obstacle at the exploration process. It
also has two rotation sensors that will permit measures
precisely robot’s displacement. RCX vertical position do not
permits robot lose contact with infrared tower when it’s
moving or turning.

Figure 10: Omega Centaury Prototype

• The land is a card, which is divided in squares of 30

Centimeters.
• It’s obtained a robot’s local manipulation from an application

made in Java. (sending code RCX). This is reached from
packages java.comm and rcx.jar.

• It’s obtained RCX’s programs that allow robot exploration.
Table 2 explains each one of them.

Program Function
GoAhead() It moves robot forward until the robot find an

obstacle or arrive to a free space
Back() It moves robot backward if the robot find an

obstacle
Middle(
message msg)

It can move robot forward or backward
depending on message.

Turn90Lft() It turn left robot 90 degrees
Turnr90Rgh() It turn right robot 90 degrees

Table 2: RCX’s programs specification

Once the experiment runs, is observed some limitations:

• Lights make some Interference when RCX is communicating

with Infrared tower. This is aggravated by RCX’s vertical
position (which places the infrared port pointing up). Reason
why ceiling lights interferes in process.

• It is necessary that the infrared tower be placed at the
communication threshold in order to avoid loss of packages.

Application development and test (Iteration 2)

Development: In this iteration the procedure is to develop an
application that served like interface between the operator and
the robot. Once constructed this application, it is adapted to the
packages obtained in previous iteration. The purpose is
obtaining a robot local manipulation from that application.

Results: the most important result in this stage, is to take a
locally control of the robot through a graphical application. This
application is shown in figure 11.

Figure 11: Application prototype

Remote component development and test (Iteration 3)

Development:

In this stage, a JINI component is created. This component
allows obtaining a remote object. Some activities are explained
following:

• A Lookup Server Installation who allows to publish and to

offer services in a network.
• A Web server installation that allows transmitting archives

from a place to another one. This server is necessary because
it transmits a service from a service provider to client (in this
case, service means an stub object). This service is sent using
HTTP protocol.

• A service provider development. This can be able to publish a
service in any server located in the network.

• A client development. This is able to look a service anywhere
within a network as obtain it and use it according to the
service specifications.

Results: the most important result obtained in this stage is a JINI
component. This is shown in figure 12.

Figure 12: JINI component behavior

1. The Service Provider makes a search of all the Lookup Server

existing in the network (Discovery).
2. The Service Provider publishes the “Mapa_Stub” service (it

contains all exploration methods) in all found Lookup Service
(Join).

3. The client makes a search of Lookup services (Discovery).
4. The client gets a “Mapa_Stub” service (Lookup).
5. The client invokes some exploration methods using RMI.

These methods are executed in the server side.
6.The Service Provider sends a remote notification that

indicates exploration’s results.

All components Adaptation and test (Iteration 4)

Development: once culminated each component separately
(Application, robot’s manipulation locally, and JINI
component), this phase is in charge of connecting each one of
these named components. This stage allows obtaining a remote
robot manipulation using an application linked to a JINI
component.

Results:

• A client represented by an application that obtains a remote

service (From JINI). This service is a centralized map that
represents the exploration state as well as all methods to
manipulate the robot

• A server (connected to the robot by infrared signals) able to
send notifications to the clients about its exploration status

• Implantation of a mutual exclusion model. A single user can
manipulate the robot in a while given (operator). The other
users enter in a waiting line ·

• Any user in delay can visualize the exploration made by the
operator.

Transition Phase

Development:

In this phase is made the experiment assembly with its
respective tests as well as small improvements in the system.
Some activities are explained following:

• The experiment’s assembly using multiple platforms (Solaris,

Linux, Windows).
• System Improvements. If the resource is not used by the

operator by a certain time, the resource is assigned to the first
user of the tail ·

• Respective System tests.

Results: in figure 13 is shown the application receiving some
information about an executed exploration. In figure 14 is

shown the experiment’s assembly given by a client who controls
a robot invoking methods located in the server.

Figure 13: Remote exploration using client application

Figure 14: Experiment running

Once the experiment ran several times the following results are
obtained:

• Communication’s loss between the RCX and infrared tower.

The experiment’s conditions must be reduced to a place little
illuminated, as well as a robot position and correct distance
between the tower and the RCX.

• Once the robot makes several displacements in the land, can
lose the correct position. It occurs because there is not an
external datum point.

Along this document is studied that JINI technology can offer
hardware device services as software services.

The RCX as device has processing and memory capacity, but it
is too limited. Therefore the RCX cannot run a Java Virtual
Machine and it cannot store JINI packages that allowed directly
device’s communication with a network. Consequently the RCX
needs to interact with a centralized computer that acts like proxy
between network and device.

The communication between infrared tower and the RCX’s
infrared port is very limited too. Therefore an advanced use is
not recommended when a constant communication movable
elements is needed.

The JINI technology advantages that are observed in the
experiment are shown next.

• Flexibility was shown at use of many network communication

protocols
• It permits a more dynamic network. Clients doesn’t need to

know where service is
• It extends the advantages of a client/server model. It

facilitates to create services centralized vs. distributed
(depending on the case).

• It has a security list so it is not necessary to configure
firewalls that allow restricting accesses to no authorized
resources.

V. References

• Dave Baum, Michael Gasperi, Ralph Hempel & Luis Villa

(2000). Extreme Mindstorms: an advanced guide to Lego
Mindstorms.

• Artima Software, Inc. (1996-2001). FAQ for JINI-user
mailing list. http://www.artima.com/jini/faq.html.

• Jan Newmarch (12 de Junio de 2001). Jan Newmarch's Guide
to JINI Technologies versión 2.8.
http://pandonia.canberra.edu.au/java/jini/tutorial/Jini.xml.

• Carlos Beltrán Gonzalez (1998-1999). RMI mano a mano con
SSL: Construyendo aplicaciones distribuidas seguras.
http://java.programacion.net/taller/joa_rmissl.php

• Sun Microsystem (2000). JiniTM Architecture Specification
versión 1.1. http://www.sun.com/jini/.

• Ivar Jacobson, Grady Booch & James Rumbaugh (1999). The
Unified Software Development Process. Adisson Wesley
Longman, Inc.

• Sun Microsystems Inc. (2001), commApi package Version
2.0.2 for Solaris Sparc & Version 2.0 for Microsoft Windows.
http://java.sun.com/products/javacomm/index.html.

• Dario Laverde (1999). rcx.jar. Extraído de la página web:
http://www.escape.com/~dario/java/rcx/

• Kekoa Proudfoot (1998-1999). RCX Internals.
http://graphics.stanford.edu/~kekoa/rcx/#Protocol

• Cay S. Horstmann & Gary Cornell (2000). Core Java 2
Volume II – Advanced Features. Prentice may.

