
Path Optimization for Multiple Objectives in Directed Graphs
using Genetic Algorithms

Juan Rada, Rubén Parma and Wilmer Pereira

Abstract— This paper presents a genetic algorithmic ap-
proach for finding efficient paths in directed graphs when
optimizing multiple objectives. Its aim is to provide solutions
for the game of Animat where an agent must evolve paths
to achieve the greatest amount of bombs in the fewest moves
as possible. The nature of this problem suggests agents with
memory abilities to choose different edges from a vertex v such
that each time v is reached, the agent can avoid cycles and be
encouraged to keep searching for bombs all over the directed
graph. This approach was tested on several random scenarios
and also on specially designed ones with very encouraging
results. The multi-objective genetic algorithm chosen to evolve
paths was SPEA2 using one-point crossover and low mutation
to allow genetic diversity of the population and an enhanced
convergence rate. Results are compared with an implementation
for the same game using Ant Colony Optimization.

I. INTRODUCTION

ACCORDING to [1], the most critical task for develop-
ing a genetic algorithm is how to encode a path in

a graph into a chromosome. Two approaches were taken
to represent paths into nodes in [1]. The first method is
a previous-node-based encoding which uses the allele (the
value a gene takes) to store the previous node id and its
locus (position of a gene in a chromosome) to indicate its
node id. The second approach was based on priorities but it
was focus on a graph itself and not a digraph.

Ideas were taken from the previous-node-based encoding
but the whole structure showed flaws applying it to this
problem. So a novel approach had to be taken and it is the
one described in this article.

Ant Colony Optimization, on the other hand, is a highly
effective algorithm for finding paths in graphs and digraphs.
This approach is frequently used, achieving results that may
position it as an ideal problem solver when dealing with this
type of situations. It could only be natural to compare the
approach of this article against the Ant Colony Optimization
algorithm described in [2].

II. THE GAME OF ANIMAT

Animat is a game about an agent trying to find all bombs
in the fewest moves as possible. It takes place in a grid of
MxN squares containing bombs, obstacles or the agent itself.
Each square determines the possible directions an agent may

Juan Rada (jcrada@gmail.com) is with the Department of Electronic
Engineering at Universidad Fermı́n Toro, Cabudare - Venezuela.

Rubén Parma (parmaia@gmail.com) is with the Department of Sys-
tems Engineering at Universidad Centroccidental Lisandro Alvarado, Bar-
quisimeto - Venezuela.

Wilmer Pereira (wpereira@ucab.edu.ve) is with the School of Informatics
Engineering at Universidad Católica Andrés Bello, Caracas - Venezuela.

take. Figure 1 shows an example of how a grid of 7x7 looks
like.

Fig. 1. Animat grid(7, 7)

The criteria for building animat grids is based on for each
(row,column) in the grid:

if row mod 2 == 0 ∧ column mod 2 == 0
then grid(row, column).content = BLOCK

if row mod 4 == 0
then grid(row, column).direction = NORTH
else grid(row, column).direction = SOUTH

if column mod 4 == 0
then grid(row, column).direction = EAST
else grid(row, column).direction = WEST

III. GENOTYPE AND PHENOTYPE

The genotype is the genetic constitution of an individual.
It produces a set of observable characteristics (phenotype)
when it interacts with the environment. In this case, the
environment is the Animat grid and the phenotype is the
resulting path from the interaction between the environment
and the agent’s genotype.

In the game of Animat, the genotype of an agent contains
decisions to be taken at bidirectional squares only. Other
squares are not relevant since they offer one or no deci-
sions at all. Initially, bidirectional squares were numbered
and indexed into the genotype but this led to phenotypes
with numerous cycles (suggesting lack of memory), misuse
of genotype useful information and evolution hardly ever



reached convergence. This approach was based on the idea
behind the previous-node-based encoding in [1], but due to
its results in this problem a different approach had to be
taken.

This time the genotype would contain sequential decisions.
The first gene determines the direction to be taken at the
initial square to move to the next one. No matter which
square is next, the second gene determines the next direction
to be taken. And so on.

Up to this point the phenotype would lead to a valid path
through the digraph. Cycles would become less frequent
since the agent may take different directions each time a
previous visited vertex is reached. Memory issues are solved
and evolution will take care of providing the agent with it.

However, the genotype’s length is fixed and determined
by the amount of bidirectional squares, so it probably might
not be long enough to build a path where all bombs could be
found. This issue was solved by adding equally-length layers
to the genotype and a policy to switch from one layer to
another. The number of layers added is given by the amount
of bombs in the grid and the policy is to switch to the next
layer whenever the agent finds a bomb from any bidirectional
square si to square sj or when the end of the layer is reached.

Figure 2 shows the genotype and phenotype for an agent
in a grid of 7x7 where the initial square is enclosed in a
circle and bidirectional squares are remarked in bold. Each
gene contains binary values indicating to move vertically (1)
or horizontally (0).

Fig. 2. Agent’s genotype and phenotype

IV. SPEA2
The Strength Pareto Evolutionary Algorithm 2 (SPEA2) is

a technique for finding or approximating the Pareto-optimal
set for multiobjective optimization problems [3]. The aim in
this application is to maximize O1 and minimize O2. These
are the sum of bombs found at each layer (1) and the sum of
moves multiplied by the cycles at each layer (2), respectively.
The latter is an heuristic to punish paths with cycles.

Crossover is done by selecting a random locus and apply-
ing one-point crossover for all layers at the same locus.

O1 =
Ln∑
L1

bombsLi
(1)

O2 =
Ln∑
L1

movesLi · (cyclesLi + 1) (2)

Mutation rate is calculated according to [4] where they
suggest high mutation rates to obtain a best overall per-
formance when strong elitism is used. According to their
experiments, they suggest a normalized mutation rate of
5 when the probability ρe to choose a parent individual
from the archive instead of the previous offspring population
is higher than 0.7 (in SPEA2, ρe = 1). From Equation 3,
mutation rate is calculated.

σmut = σ · n−1 = 5 · (bombs · decisions)−1 (3)

where n is the length of the genotype.

V. RESULTS

An experiment consists in a 200 epochs evolution of a
given population using SPEA2. Results are based on the
population emerged from recombination and mutation of the
mating pool. This mating pool does not necessarily contain
non-dominated individuals as it may be filled by the best
dominated individuals in order to satisfy the archive size. The
criteria used to fill or truncate the mating pool is explained
in [3].

Initially all experiments were made using a mutation rate
calculated with Equation (3) but results were not satisfactory,
so a conservative rate of 0.001 was used. Evolution was
made using parameters in Table I on six specially designed
environments in order to test different courses of evolution.

TABLE I
EVOLUTION PARAMETERS

Parameter Value

Population Size 100
Archive Size 50

Mutation 0.001
Generations 200

Results for each environment are based on the experiment
that led to the best population average fitness among 20
experiments performed. The following figures show the en-
vironment (left), the average bombs found (upper-right) and



the average moves done (lower-right), both objectives by the
whole population during evolution in term of epochs.

Fig. 3. Environment 1

Environment 1 (Figure 3) was designed to find the
shortest path such that all squares are visited at least once.
The best population found an average of 95.93 bombs out of
96 in 218.94 moves.

Fig. 4. Environment 2

Fig. 5. Environment 3

Environments 2 and 3 (Figures 4 and 5, respectively)
presented some difficulties for finding an efficient path in
many experiments due to the distribution of bombs. The bests
populations found 39.96 bombs out of 40 in 158.91 moves
and 16.00 bombs out of 16 in 103.00 moves, respectively.

Fig. 6. Environment 4

Environment 4 (Figure 6) is quite peculiar. In this
case, the agent must perform a ladder path from top-left to
bottom-right and then go back again. The agent performed
smoothly and according to the plans. The best population
was found at the 20th generation finding an average of 10.00
bombs out of 10 in 39 moves.

Fig. 7. Environment 5

Environment 5 (Figure 7) introduced a new variant.
Dead ends were added to the grid so whenever an agent
reaches one, it gets stuck incrementing cycles and moves
for each layer until all layers are executed. Consequently,
its genotype has much less preferability than others in its
population.

Fig. 8. Environment 6



Finally, Environment 6 (Figure 8) was designed to
prove that the shortest path is not necessarily based on a
greedy algorithm finding the nearest bomb at each decision
square.

All results are grouped in Table II, where it details the
best population evolved in each environment.

TABLE II
BEST POPULATIONS

Bombs Max Bombs Min Moves Generation

E1 96 95.93 218.94 52
E2 40 39.96 158.91 196
E3 16 16.00 103.00 130
E4 10 10.00 39.00 20
E5 8 8.00 35.00 44
E6 2 2.00 21.00 8

The same experiments were performed using Ant Colony
Optimization according to [2]. Table III shows the bests
results of each approach (based on the fact that all bombs
were found) and Figure 9 shows a graphical comparison.

TABLE III
SPEA2 vs. ACO

SPEA2 ACO
Environment # Bombs # Moves # Moves

E1 96 218 155
E2 40 158 133
E3 16 103 93
E4 10 39 39
E5 8 35 37
E6 2 21 30

Fig. 9. SPEA2 vs. ACO

VI. CONCLUSIONS

Results were very encouraging using the layered struc-
ture of the genotype in the vast majority of experiments
performed. These results show the immense power of multi-
objective genetic algorithms when using an appropriate struc-
ture for encoding a path in a graph into chromosomes.

The layered structure of the genotype is presented as a
new approach for finding efficient paths in digraphs where
multiple objectives are to be optimized.

The length of each layer Li is given by the amount of
bidirectional squares, this way an agent may visit all of these
squares (if needed) to find one bomb. Increasing its length in
n genes implies that an agent could visit all squares once and
revisit n squares more before finding one bomb. Revisited
squares form cycles and these are heavily punished by the
heuristics used to evaluate objective O2. In consequence,
increasing its length is not going to improve its fitness despite
the bigger search space, instead more generations are needed
to find similar solutions because noise is added to evolution
rather than relevant genetic information.

The number of layers within the genotype is given by the
amount of bombs in the grid. Each layer is intended to be
used for finding one bomb and then switch to the next layer.
Any number of layers greater than the amount of bombs
would have no effect in evolution.

Heuristics used for avoiding cycles worked flawlessly,
helping evolution to better classification of individuals in
the population. Cycles were successfully avoid in each layer
through the course of evolution, resulting in more efficient
paths.

Mutation rate as described in [4] was not satisfactory
because it was too high causing the average population to
reach approximately n − 3 bombs in best cases. This is
because genes are highly coupled and when one gene is
mutated it alters dramatically the whole path.

The Ant Colony Optimization Algorithm described in [2]
outperformed SPEA2 in environments where most of the
bombs were grouped. However SPEA2 showed better results
when the distribution of bombs was less clustered.

Future works rests on improving the structure in order to
be able to choose from more than two options at any vertex.
We are currently working on extending this genotype’s
structure for the Open Shortest Path First (OSPF) hop-by-hop
routing problem in order to compare it directly against the
approach taken in [1]. We are, as well, working on solving
the game of Animat via multi-agents.

REFERENCES

[1] N. Selvanathan and W. J. Tee, “A genetic algorithm solution to solve
the shortest path problem in ospf and mpls,” in Malaysian Journal of
Computer Science, 2003.

[2] R. Parma, J. Rada, and W. Pereira, “Ant colony optimization applied
to an autonomous multiagent game,” in 10th International Conference
on Computer Games: AI, Animation, Mobile, Educational & Serious
Games, 2007.

[3] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the
Strength Pareto Evolutionary Algorithm for Multiobjective Optimiza-
tion,” in Evolutionary Methods for Design, Optimization and Control
with Application to Industrial Problems (EUROGEN 2001), 2002.

[4] M. Laumanns, E. Zitzler, and L. Thiele, “On the effects of archiving,
elitism, and density based selection in evolutionary multi-objective
optimization,” in EMO ’01: Proceedings of the First International
Conference on Evolutionary Multi-Criterion Optimization, 2001.


